Superconductivity in Carbide Compounds

Takahiro Muranaka¹ and Jun Akimitsu²*

¹Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
²Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan

Abstract

The discovery of superconductivity in MgB₂ and B-doped diamond has stimulated the search for new superconducting materials in similar systems containing light elements. In the framework of BCS theory, high frequency phonons induced in a network of light elements can yield a higher superconducting transition temperature (Tc). It shows that light element superconductors provide one of the most promising paths to a room-temperature superconductor taking account of the relationship electronic state and bonding state.

Keywords: Superconductivity; Phonons; Sesqui-carbides

Introduction

The discovery of superconductivity in MgB₂ [1] and B-doped diamond [2] has stimulated the search for new superconducting materials in similar systems containing light elements. In the framework of BCS theory [3], high frequency phonons induced in a network of light elements can yield a higher superconducting transition temperature (Tc). These discoveries turned our attention towards new combinations of intermetallic compounds, and we discovered new superconductors in carbide systems, Y₂C₃ [4] and B-doped SiC [5]. In this paper, we review these superconductors.

Superconductivity in Y₂C₃

Sesqui-carbides (R₂C₃; R=Y, La, Lu) such as Pu₃C₃, which crystallize as bcc structures without an inversion center, are reported to exhibit superconductivity at relatively high temperatures for intermetallic compounds, with Tc’s that depend on their carbon content [6-10]. The crystal structure of Y₂C₃ is shown in Figure 1. In this structure, Y atoms are aligned along the <111> direction and C atoms form C-C dimers.

In particular, Th substituted sesquiscarbides of yttrium and lanthanum, (R-Th)₂C₃, have attracted attention because their Tc’s are close to those of niobium-based A15-type superconductors. These materials showed superconductivity with a variable Tc, having a maximum at 17 K. So, we attempted to synthesize the sesquiscarbide material under higher temperature and pressure conditions. With a high temperature and pressure synthesis at 1473–1873 K and 4–5.5 GPa, using cubic-anvil-type equipment, we found that Y₂C₃ had a maximum Tc of 18 K, as shown in Figure 2.

From a theoretical point of view, the band structure of Y₂C₃ shows that the hybridization of C-C dimer antibonding and the Y-4d characteristics are dominant at the Fermi level [11,12]. The electronic structure of Y₂C₃ with C dimers suggests that the electronic structure could have substantial C-C antibonding near the Fermi level [12]. It has been reported that low-frequency metal atom vibrations have the largest electron-phonon coupling in Y₂C₃, while the contribution of high-frequency C-C stretching vibrations is comparatively small [13].

However, the mechanism of superconductivity in Y₂C₃ has not been well understood because of the difficulty involved in synthesizing stable, single-phase Y₂C₃, in air. We established a technique for synthesizing high-purity samples, and prepared samples having various Tc’s to investigate the mechanism of the variation of Tc in this system [14,15]. As shown in Figure 3, the magnetic susceptibility of Y₂C₃ decreased significantly at each Tc and the superconducting volume fraction of each Tc sample at lowest temperature in susceptibility measurements (1.8 K) was estimated to be approximately 40% in the field cooling process. The magnetization vs. magnetic field (M-H) curves exhibit typical type-II superconducting behavior.

The electronic specific heat (Cₑ) of each sample (11K material, 13K material, and 15K material) is shown in Figure 4. The total specific heat (C) is expressed by following formula:

\[C = C_d + C_{ph} = \gamma T + \beta T^3 + \delta T^5 \]

(1)

The C_d is obtained by subtracting the lattice part of the specific heat (C_l) from the total specific heat (C), which is measured at zero field and FT, respectively. In this case, an applied field cannot completely suppress superconductivity, and γT in the C_d term provides a minor contribution. So we used the normal-state entropy formula:

\[S_n = \gamma T + \frac{1}{3} \beta T^3 + \frac{1}{5} \delta T^5 \]

(2)

For determination of γ and Θ_n, (derived from β = N(12/5)π²Θ_n²γR, where R = 8.314(J/molK) and N = 5) in an S_n vs. T² plot. This method is useful for a superconductor, in which superconductivity cannot be completely suppressed by an applied magnetic field [16]. The value of γ and Θ_n of Y₂C₃ were calculated to be 4.7 ml/molK² and 540 K for the 11K material, 6.0 ml/molK² and 530 K for the 13K material, and 6.3 ml/molK² and 530 K for the 15K material, respectively. The fitting below Tc for each sample has revealed exp(-1/T²) dependence as predicted by BCS theory, rather than T⁻¹ dependence as would an anisotropic superconductor. We estimated the superconducting gap parameters, 2Δ/k_B Tc, to be 3.6, 3.9, and 4.1 for 11, 13, and 15K materials, respectively. These facts suggest that the symmetry of the superconducting gap is an isotropic s-wave, and superconductivity in Y₂C₃ can be described as belonging to the strong coupling regime.

Figure 5 shows the temperature dependence of the specific heat of three samples under various magnetic fields. Tc decreases with increasing applied field and the μH_c(0) was determined from the midpoint temperature of the jump at several applied fields, shown in

*COrresponding author: Jun Akimitsu, Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan, Tel/Fax: 81-86-251-8632 E-mail: akimitsu@hiroshima-u.ac.jp

Received June 13, 2016; Accepted July 15, 2016; Published July 22, 2016

Copyright: © 2016 Muranaka T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Therefore we focus on the relationship between γ and T_c, the T_c of Y_2C_3 increases as γ increases. The γ value is given by

$$\gamma = \pi^2 k_B^2 D(\varepsilon_F) / 3,$$

where $D(\varepsilon_F)$ is the density of states at the Fermi level. In BCS theory, T_c is given by

$$T_c = \frac{\hbar^2}{2\pi^2 k_B^2 D(\varepsilon_F) \xi^2},$$

so it is considered that T_c in Y_2C_3 increases as $D(\varepsilon_F)$ increases. However, the γ value of Y_2C_3 is not very high in comparison with that of Nb$_3$Sn, where $\gamma=13$ mJ/molK2 [17]. So, we concluded that its high Debye temperature makes T_c relatively high despite its small Sommerfeld coefficient.

Nakan et al. looked for the causes of different T_c's in Y_2C_3, structural properties, using neutron powder diffraction [19]. As they reported, high-T_c ($-15K$) and low-T_c ($-11K$) phases involved a small difference in C-C dimer distance, 1.298(4) Å for 15K phase and 1.290(4) Å for 11K phase, while the lattice parameter was constant for all samples. Thus a change in C-C dimer distance may induce a change of the electronic state of the C-C dimer, resulting in an altered T_c in Y_2C_3.

Considering some other superconducting materials without an inversion center, CePt$_3$Si and Li$_2$Pt$_3$B, their superconducting states are interesting because of the admixture of spin-singlet and spin-triplet superconducting states that is induced by spin-orbit coupling [20,21]. Because Y_2C_3 does not have an inversion center in its crystal structure, the determination of the order parameter and the details of the superconducting gap structure are worth some attention.

In a 13C-NMR study of Y_2C_3 with a $T_c=15.7$ K at $H=0$ T, a clear decrease in 13C Knight Shift and an increase in the full width at half maximum (FWHM) of 13C-NMR spectra are observed below T_c, as shown in Figure 7 [22]. It is suggested that the decrease of Knight Shift is due to a reduction of spin susceptibility associated with an onset of spin-singlet superconductivity in Y_2C_3, with the increase of FWHM possibly being due to an inhomogeneous distribution of vortex lattices.

Table 1 lists the superconducting parameters of three phases of Y_2C_3, with T_c in Y_2C_3 structural is not related to Θ_D.

Table 1: A summary of superconducting parameters of Y_2C_3

<table>
<thead>
<tr>
<th>T_c [K]</th>
<th>γ [mJ/molK2]</th>
<th>Θ_D [K]</th>
<th>$\mu_B H_{c2}(0)$ [T]</th>
<th>$2\Delta_0 / k_B T_c$ [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6</td>
<td>4.7</td>
<td>540</td>
<td>22.7</td>
<td>3.6</td>
</tr>
<tr>
<td>13.9</td>
<td>6.0</td>
<td>530</td>
<td>24.7</td>
<td>3.9</td>
</tr>
<tr>
<td>15.2</td>
<td>6.3</td>
<td>530</td>
<td>26.8</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Figure 2: Temperature dependence of susceptibility of Y_2C_3. The inset shows an expanded view near the T_c region.
Figure 4: Temperature dependence of C_p for (a) 11K, (b) 13K, and (c) 15K materials. The dashed lines show exponential curves.

Figure 5: Temperature dependence of specific heat at various magnetic fields for (a) 11K, (b) 13K, and (c) 15K materials.
The temperature dependence of $1/T$ of Y_2C_3 seems to have a small kink at around 5 K. It seems that a large full gap opens in the high-temperature magnetic field ($T=9.85$ T). As shown in the inset of Figure 8, a tiny coherence peak is observed in $(T, T)_c$ just below T_c as in MgB$_2$, indicating the opening of a full gap in the superconducting states of Y_2C_3. The temperature dependence of $1/T_c$ below T_c does not reveal a simple exponential term and seems to have small kink at around 5 K.

Figure 8 shows the Arrenhius plot of $(T, T)/T$ vs. T/T_c with $T_c=12.2$ K at $H=9.85$ T to help analyzing the details of the superconducting gap structure. The temperature dependence of $(T, T)/T$ does not obey a simple power-law behavior such as T^2. It seems that a large full gap opens in the high-temperature region and low-lying quasiparticle excitations in the low-temperature region are dominated by the presence of a small full gap. The large and small superconducting gaps, $2\Delta/k_BT_c$, are estimated to be about 5 ($T=5$ K) and 2 ($T<5$ K), respectively. This behavior supporting multigap superconductivity in Y_2C_3 is not due to an extrinsic factor such as inhomogeneity of the samples, because $1/T_c$ is uniquely determined by the simple exponential curve of nuclear magnetization as shown in the inset of Figure 8.

This multigap behavior in Y_2C_3 is also detected by μSR measurements [23,24]. In the μSR study, muon spin relaxation rates of Y_2C_3 and LaC_3 are reported. The crystal structure of LaC_3 is a PuC_2-type structure and its T_c's are reported to be 6–13 K in different samples [9,25,26]. Therefore, an electronic structure similar to Y_2C_3's is expected for LaC_3, making LaC_3 a good candidate for comparative study with Y_2C_3. The specific heat measurement of LaC_3 is reported to suggest single-gap superconductivity [27].

Figure 10 shows the temperature dependence of the muon spin relaxation rate for LaC_3 and Y_2C_3. It is noted that plots of LaC_3 reveal a deviation from single-gap BCS-type superconducting behavior, though in the case of Y_2C_3, no strong anomaly is observed in the muon spin relaxation. However, the temperature dependence below ~6 K ($T/T_c<0.4$) cannot be explained by a single-gap BCS picture. These temperature dependences can be understood from the double-gap structure in each compound by considering the Fermi surface of Y_2C_3 (three hole bands and one electron band) obtained by first-principles calculation [28].

Two superconducting gaps in Y_2C_3 and LaC_3 can be realized by the differences in the density of states and Fermi velocities between hole and electron bands, so the temperature dependence of muon spin relaxation in each compound is affected by them. Taking the inter-band interactions into account, it can be understood from the double-gap structure in each compound by considering the Fermi surface of Y_2C_3 (three hole bands and one electron band) obtained by first-principles calculation [28].
In the penetration depth, \(\lambda(T) \) of both compounds is pointed out. However, in recent reports, the possibility of a nontrivial superconducting state in both compounds are described in the regime of strong electron-phonon coupling strength, \(w \), between the two compounds into account, the results after analyzing the difference in the temperature dependence of muon spin relaxation between \(\text{La}_2\text{C}_3 \) and \(\text{Y}_2\text{C}_3 \) by the two-gap model are listed in Table 2.

Table 2: Superconducting parameters of \(\text{Y}_2\text{C}_3 \) and \(\text{La}_2\text{C}_3 \).

<table>
<thead>
<tr>
<th>Transverse field (kOe)</th>
<th>(\text{La}_2\text{C}_3)</th>
<th>(\text{Y}_2\text{C}_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_c) (K)</td>
<td>10.9(1)</td>
<td>14.7(2)</td>
</tr>
<tr>
<td>(\sigma) ((\mu)s)</td>
<td>0.71(3)</td>
<td>0.48(2)</td>
</tr>
<tr>
<td>(\Lambda) (A)</td>
<td>3800(100)</td>
<td>4800(100)</td>
</tr>
<tr>
<td>(\Delta_c) (meV)</td>
<td>2.7(1)</td>
<td>3.1(1)</td>
</tr>
<tr>
<td>(\Delta_s) (meV)</td>
<td>0.6(1)</td>
<td>0.7(3)</td>
</tr>
<tr>
<td>(2\Delta_c/\kappa T_c)</td>
<td>5.6(3)</td>
<td>4.9(3)</td>
</tr>
<tr>
<td>(2\Delta_s/\kappa T_c)</td>
<td>1.3(3)</td>
<td>1.1(5)</td>
</tr>
</tbody>
</table>

From the superconducting parameters of \(\text{Y}_2\text{C}_3 \) and \(\text{La}_2\text{C}_3 \), which are deduced from \(\mu\)SR measurements, the superconductivities in both compounds are described in the regime of strong electron-phonon coupling and \(s \)-wave symmetry, which is basically in good agreement with previous reports. However, in recent reports, the possibility of a nontrivial superconducting state in both compounds is pointed out.

Figure 9: Arrhenius plot of \((T_c, T_c) - (T_c, T_c)_{\text{norm}} \) vs. \(T_c / T_c \), with \(T_c = 12.2 \) K at \(H = 9.85 \) T. The inset shows a simple exponential recovery curve of nuclear magnetization.

Figure 10: Temperature dependence of the muon spin relaxation rate for (a) \(\text{La}_2\text{C}_3 \) at 2.5 kOe and (b) \(\text{Y}_2\text{C}_3 \) at 5.0 kOe. Solid and dashed curves are fitting lines for the double-gap model. Insets show the order parameters \(\Delta_k \), for the respective cases.

Figure 11: Unit cell of (a) cubic 3C-SiC and (b) hexagonal 4H-SiC.

Supercconductivity in Boron-Doped SiC

The superconductivity of doped semiconductors such as B-doped diamond in bulk [2] and films [33,34], and in B-doped Si [35] has stimulated renewed interest in the low-carrier-density superconductivity of doped semiconductors. In the case of B-doped diamond, experimental and theoretical research has sought to clarify whether its metallic nature arises from holes at the top of the diamond valence band or from the boron impurity band formed above the valence band [36-47]. In particular, a higher-\(T_c \) is suggested, where bonds transform into bands by carrier-doping to a semiconductor [48-50].

In terms of structural features and physical properties, we focused on SiC, which has many stable polytypes including cubic zinc-blende, hexagonal and rhombohedral polytypes. As shown in Figure 11, in the cubic zinc-blende structure, labeled as 3C-SiC or \(\beta \)-SiC, Si and C occupy ordered sites in a diamond framework, and in hexagonal polytypes, nH-SiC, and rhombohedral polytypes, nR-SiC, generally referred to as \(\alpha \)-SiC, nSi-C bilayers consisting of C and Si layers are stacked in a primitive unit cell.

Undoped SiC is a wide-band-gap semiconductor with a band gap of 2–3 eV depending on the crystal modification [51], and N, P, B, Al, etc. are lightly doped as donors or acceptors by ion implantation or thermal diffusion. When the dopant-induced carrier concentration increases, an insulator-to-metal transition occurs in semiconductors, and superconductivity has been induced in some semiconductors.
[52-55], in accord with theoretical predictions [56,57]. In SiC, the semiconductor-to-metal transition has been observed in n-type N-doped 4H-SiC with carrier concentrations above 10^{20} cm$^{-3}$ without a superconducting transition [58].

In this situation, we succeeded in inducing type-I superconductivity in p-type boron-doped 3C-SiC with a carrier concentration of 1.06-1.91 $\times 10^{21}$ cm$^{-3}$ [5], and after this report we confirmed a superconducting transition in B-doped 6H-SiC at a similar carrier concentration [59]. The question arises whether SiC exhibits superconductivity with different dopant elements. In fact, p-type Al-doped 4H-SiC with an Al concentration of 8.7 $\times 10^{20}$ cm$^{-3}$ showed metallic behaviors and a slight drop around 7 K in the temperature-dependence of sheet resistance [60]. We note that this drop may indicate the onset of a superconducting transition, but a superconducting transition has not been confirmed. However, we did induce type-II superconductivity in p-type Al-doped 3C-SiC with a carrier concentration of 3.86-7.06 $\times 10^{20}$ cm$^{-3}$ [59].

From typical PXRD patterns of B-doped 3C-SiC and 6H-SiC, the main phases in each sample were indexed as cubic zinc-blende 3C-SiC, and hexagonal 6H-SiC phases, respectively, as shown in Figure 12.

The refined lattice parameter of the major 3C-SiC phase increased after sintering, though only by ~0.1%, from 4.3575(3)Å to 4.3618(4) Å, and the refined lattice parameter, c, of the major 6H-SiC phase also increased after sintering by ~0.2%, from 15.06 Å to 15.09 Å. However, the refined lattice parameter, a, of 6H-SiC (in commercial 3.064 Å) did not change (within experimental accuracy). Because the atomic sizes of boron and carbon are comparable, but both are much smaller than silicon, the small changes in the lattice parameters suggest that boron substitutes at the carbon site in these samples. By means of the Hall effect at room temperature, the hole concentrations, n, were estimated to be ~1.91 $\times 10^{21}$ cm$^{-3}$ for B-doped 3C-SiC and ~2.53 $\times 10^{20}$ cm$^{-3}$ for B-doped 6H-SiC. The samples had much higher doping levels than those in previous reports [61-64]. The presence of liquid silicon in the sintering process may have helped boron diffusion and enhanced boron-substitution efficiency.

As shown in Figure 13, the magnetic susceptibility of B-doped 3C-SiC and 6H-SiC under a magnetic field of 1 Oe (zero field cooling process) significantly decreases at ~1.4 K, suggesting the occurrence of superconductivity with a superconducting volume fraction over 100% by the shielding effect.

Figure 14 shows magnetization vs. magnetic field (M-H) curves of B-doped 3C-SiC and 6H-SiC. These curves reveal type-I superconducting behavior. In both compounds, the onset field of magnetization shows a hysteresis about 30 Oe wide at the lowest temperature. Hysteresis during increasing and decreasing fields suggests that a 1st order transition under a finite magnetic field is occurring in both compounds, supporting type-I superconductivity. From the M-H curves, the critical field, H_c, is estimated to be about 100 Oe.

As shown in Figure 15, the electrical resistivity in B-doped 3C-SiC:B and 6H-SiC reveals metallic conductivity, reflecting the high carrier-doping level with residual resistivity ratios, $R_{RRR} (\rho_{300K}/\rho_{5K})$, of 11.4 and 4.7, respectively. B-doped 3C-SiC exhibits a much smaller resistivity, almost T-linear, but B-doped 6H-SiC exhibits a broad feature at around 150 K suggesting the weak localization of carriers or a contribution from non-metallic grain boundaries. The inset of Figure 15 shows an expanded view of the low-temperature data. The resistivities exhibit sharp drops at 1.5 K (B-doped 3C-SiC) and 1.4 K (B-doped 6H-SiC), corresponding to the T_c's observed from the susceptibility.

To determine the phase diagram in the magnetic field-temperature (H-T) plane for both samples, the resistivities were measured by varying the temperature at different magnetic fields (T-scan shown in Figure 16), and varying the magnetic fields at different temperatures (H-scan shown in Figure 17). In the T-scan, only one transition was observed at T_c at zero field, while a large super cooling effect was observed in both SiC samples in finite fields. In the H-scan, hysteresis was also observed under 130 Oe in B-doped 3C-SiC and 100 Oe in B-doped 6H-SiC. The (i) in-field hysteresis, (ii) absence of hysteresis in a zero field, and (iii) very small value of the critical field, give strong evidence for type-I superconductivity in both SiC polytypes.

The H-T phase diagram determined from the resistivity data (T-scan and H-scan) is shown in Figure 18. Applying the conventional
The formula $H_c(T) = H_c(0)[1 - (T/T_c)(0)]^2$, the thermodynamic critical field, $H_c(T)$, is estimated to be 132 ± 3 Oe with $\kappa \approx 2.0$ for B-doped 3C-SiC and 125 ± 5 Oe with $\kappa \approx 1.6$ for B-doped 6H-SiC in the warming plots. The same procedure applied to the cooling plots yields $\kappa \approx 1.6$ in both SiC polytypes. This transition is identified as the upper limit of the intrinsic supercooling limit. The corresponding transition fields are denoted as $H_c(0)$ (the subscript “sc” stands for supercooling) with an estimated $H_c(0) = 102 \pm 6$ Oe for B-doped 3C-SiC and 94 ± 3 Oe for B-doped 6H-SiC, respectively.

Applying the Ginzburg-Landau (GL) theory of type-I superconductivity to these data, one can estimate an upper limit of the GL parameter κ from the difference of the critical fields obtained by a field-cooling run and a subsequent warming run [65,66]: $\kappa = \sqrt{H_c(0)}/H_c(0)$. This formula yields $\kappa \approx 0.32$ for B-doped 3C-SiC and 0.31 for B-doped 6H-SiC, in agreement with the analysis of the Hall effect and the specific heat data [67,68]. This supports the type-I nature of superconductivity in B-doped SiC. Note that the value of κ is below 0.41, which is required in a model based on supercooling [66,69,70].

Additional table and figure captions:

Table 3 lists basic normal-state parameters: Fermi wave number k_F, effective mass m^*, Fermi velocity v_F, mean free path l, as well as superconducting state parameters: penetration depth λ, coherence length ξ and Ginzburg-Landau parameter κ_{GL} deduced from T-scan and H-scan in resistivity, Hall effect, and specific heat [67,68].

For comparison, the previously reported parameters for B-doped diamond (C:B) and B-doped Si (Si:B) are added. The coherence lengths of B-doped 3C-SiC and 6H-SiC are compared with B-doped diamond and B-doped Si. Type-I superconductivity in B-doped SiC originates in these long coherence lengths.

However, it is not clear why SiC:B reveals type-I superconductivity in spite of the dirty limit ($l < \xi$). From SEM images of B-doped SiC samples (not shown in this paper), the maximum crystal grain size is about 5 µm, and in higher B-content samples (higher starting ratio), the crystal grain size tends to grow much larger. Crystal grain size growth is enhanced by adding Si and B during the synthesis process.

However, T_c in superconducting B-doped SiC samples does not change with the B-nominal composition. It is considered that the

<table>
<thead>
<tr>
<th>Parameter</th>
<th>3C-SiC:B</th>
<th>6H-SiC:B</th>
<th>C:B</th>
<th>Si:B</th>
</tr>
</thead>
<tbody>
<tr>
<td>n [cm$^{-2}$]</td>
<td>1.91×10^{11}</td>
<td>2.53×10^{20}</td>
<td>1.80×10^{11}</td>
<td>2.80×10^{21}</td>
</tr>
<tr>
<td>γ [mJ/moleK2]</td>
<td>0.294</td>
<td>0.35</td>
<td>0.113</td>
<td>-</td>
</tr>
<tr>
<td>ρ_0 [mOcm]</td>
<td>0.06</td>
<td>1.19</td>
<td>2.5</td>
<td>0.13</td>
</tr>
<tr>
<td>RRR</td>
<td>11.4</td>
<td>4.7</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>T_c [K]</td>
<td>1.5</td>
<td>1.4</td>
<td>4.5</td>
<td>0.35</td>
</tr>
<tr>
<td>$H_c(0)$ [Oe]</td>
<td>132</td>
<td>125</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$H_{c2}(0)$ [Oe]</td>
<td>102</td>
<td>94</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>κ [00/1-0.695 2000]</td>
<td>3.03</td>
<td>1.37</td>
<td>0.34</td>
<td>-</td>
</tr>
<tr>
<td>k_F [nm$^{-1}$]</td>
<td>3.8</td>
<td>2.0</td>
<td>3.8</td>
<td>-</td>
</tr>
<tr>
<td>m^* [m]</td>
<td>1.2</td>
<td>1.9</td>
<td>1.7</td>
<td>-</td>
</tr>
<tr>
<td>v_F [m/s]</td>
<td>3.8×10^5</td>
<td>1.1×10^5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>l [nm]</td>
<td>2.8</td>
<td>2.8</td>
<td>0.34</td>
<td>-</td>
</tr>
<tr>
<td>$\xi(0)$ [nm]</td>
<td>360</td>
<td>112</td>
<td>80(9)</td>
<td>(20)</td>
</tr>
<tr>
<td>$\lambda(0)$ [nm]</td>
<td>130</td>
<td>140</td>
<td>160</td>
<td>-</td>
</tr>
<tr>
<td>k_{GL}</td>
<td>0.32</td>
<td>0.31</td>
<td>2(18)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Parameters in normal and superconducting states of B-doped 3C-SiC, B-doped 6H-SiC [5,59,67,68], B-doped diamond [2,36] and B-doped Si [35].

Figure 14: Magnetization versus magnetic field curves in (a) B-doped 3C-SiC (3C-SiC:B) and (b) B-doped 6H-SiC (6H-SiC:B).

Figure 15: Temperature dependence of resistivity in B-doped 3C-SiC (3C-SiC:B) and B-doped 6H-SiC (6H-SiC:B). The inset magnifies the region near T_c.

Figure 16: Temperature dependence of resistivity under magnetic fields (T-scan) in (a) B-doped 3C-SiC (3C-SiC:B) and (b) B-doped 6H-SiC (6H-SiC:B).

Figure 17: Magnetic field dependence of resistivity (H-scan) in (a) B-doped 3C-SiC (3C-SiC:B) and (b) B-doped 6H-SiC (6H-SiC:B).

Figure 18: H-T phase diagram for (a) B-doped 3C-SiC (3C-SiC:B) and (b) B-doped 6H-SiC (6H-SiC:B), determined from the onset of superconductivity in T-scan and H-scan of resistivity.
B-doping level in B-doped SiC has already reached the limiting level (a certain constant B/C ratio) in a solid state reaction. As a result, T_c does not change. Moreover, the mean free path l in B-doped SiC samples is extended by grain boundary effects or un-reacted starting powder. Thus the mean free path l in B-doped SiC can be extended up to the clean limit ($l >> \xi$) in a high quality sample.

Conclusion

We have reviewed superconductivity in carbide compounds, whose T_c's are unfortunately limited to the 10K–20K range. During the process in the developments of these superconductors, we focused on the high frequency phonon which was induced by light element. The maximum T_c in sesqui-carbides and wide band-gap semiconductors are 18K and 11K, respectively, at this stage. So, other routes have to be sought for development of new high-T_c superconductor. Recently, much attention has been paid to the new superconductor H$_2$S ($T_c \sim 200K$) under ultra-high pressure (200 \sim GPa), which can be described by the BCS theory [71]. This probably shows that light element superconductors provide one of the most promising paths to a room-temperature superconductor taking account of the relationship between electronic state and bonding state.

Acknowledgements

This work is supported by Grant-in-Aid from Ministry of Education, Culture, Sports, Science and Technology (MEXT) under No. 25000003, 26247057, and by JSPS KAKENH Grant Number 15H05886 and partially by the Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers from Japan Society for the Promotion of Science.

References

Feder J (1967) Comments of the supercooling field for superconductors with K values near 0.4. Solid State Comm 5: 299-301.

OMICS International: Open Access Publication Benefits & Features

Unique features:
- Increased global visibility of articles through worldwide distribution and indexing
- Showcasing recent research output in a timely and updated manner
- Special issues on the current trends of scientific research

Special features:
- 700+ Open Access Journals
- 50,000+ editorial team
- Rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at major indexing services
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission